Part Number Hot Search : 
MLL5943C SPN3458S ZM4756 RD11UM HD14017 HMC48 1N540 GP1S27
Product Description
Full Text Search
 

To Download TDK5111F Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  data sheet, v 1.1, september 2007 TDK5111F 315 mhz ask/fsk transmitter in 10-pin package version 1.1 wireless control components never stop thinking.
edition 2007-09-18 published by infineon technologies ag, am campeon 1-12 85579 neubiberg, germany ? infineon technologies ag 2007. all rights reserved. attention please! the information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. terms of delivery and rights to technical change reserved. we hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. information for further information on technology, delivery terms and conditions and prices please contact your nearest infineon technologies office in germany or the infineon technologies companies and our infineon technologies representatives worldwide ( www.infineon.com ). warnings due to technical requirements components may contain dangerous substances. for information on the types in question please contact your nearest infineon technologies office. infineon technologies components may only be used in life-support devices or systems with the express written approval of infineon technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. if they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
data sheet, v 1.1, september 2007 TDK5111F 315 mhz ask/fsk transmitter in 10-pin package version 1.1 wireless control components never stop thinking.
TDK5111F revision history: 2007-09-18 v 1.1 previous version: v1.0 as of march 2005 page subjects (major changes since last revision) 27 increased esd-values 28-30,32 added max.-and min.-values (current, power) 32 added output power and temperature drift of output power values 28, 30, 32 added values of frequency range and for possible enhance of frequency range we listen to your comments any information within this document that you feel is wrong, unclear or missing at all? your feedback will help us to continuously improve the quality of this document. please send your proposal (including a reference to this document) to: sensors@infineon.com
TDK5111F table of contents page data sheet 5 v 1.1, 2007-09-18 1 product description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 pin definition and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 functional block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.1 pll synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.2 crystal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.3 power amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.4 power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.4.1 power down mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.4.2 pll enable mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.4.3 transmit mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.4.4 power mode control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.5 recommended timing diagrams for ask- and fsk-modulation . . . . . 17 3 applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1 50 ohm-output testboard schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 50 ohm-output testboard layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 bill of material (50 ohm-output evalboard) . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4 application hints on the crystal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.5 design hints on the clock output (clkout) . . . . . . . . . . . . . . . . . . . . . . 24 3.6 application hints on the power-amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1 electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.1 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 operating ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3 ac/dc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3.1 ac/dc characteristic at 3v, 25c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3.2 ac/dc characteristic at 2.1v ...4.0 v, -40c ...+125c . . . . . . . . . . . . 30 5 package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
TDK5111F product description data sheet 6 v 1.1, 2007-09-18 1 product description 1.1 overview the tdk 5111 f is a single chip ask/fsk transmitter for operation in the frequency band 311 ... 317 mhz. the ic offers a high level of integration and needs only a few external components. the device contains a fully integrated pll synthesizer and a high efficiency power amplifier to drive a loop antenna. a special circuit design and an unique power amplifier design are used to save current consumption and therefore to save battery life. additional features are a power down mode and a divided clock output. 1.2 features ? fully integrated frequency synthesizer ? vco without external components ? ask and fsk modulation ? frequency range 311 ... 317 mhz ? high efficiency power amplifier (typically 10 dbm) ? low supply current ? voltage supply range 2.1 ... 4 v ? temperature range ? 40 ... +125c ? power down mode ? crystal oscillator 9.84 mhz ? fsk-switch ? divided clock output for c ? low external component count 1.3 application ? tire pressure monitoring systems ? keyless entry systems ? remote control systems ? alarm systems ? communication systems table 1 order information type ordering code package TDK5111F sp000056181 pg-tssop-10 available on tape and reel
data sheet 7 v 1.1, 2007-09-18 TDK5111F functional description 2 functional description 2.1 pin configuration figure 1 ic pin configuration 2.2 pin definition and functions table 2 pin definition and functions - overview pin no. symbol function 1 clkout clock driver output (615.2 khz) 2 vs voltage supply 3 gnd ground 4 fskout frequency shift keying switch output 5 cosc crystal oscillator input (9.84 mhz) 6 askdta amplitude shift keying data input 7 fskdta frequency shift keying data input 8 pagnd power amplifier ground 9 paout power amplifier output (315 mhz) 10 pdwn power down mode control pdwn paout pagnd fskdta askdta clkout vs gnd fskout cosc 1 2 3 4 5 10 9 8 7 6 tdk 5111f
TDK5111F functional description data sheet 8 v 1.1, 2007-09-18 table 3 pin definition and function 1 pin no. symbol interface schematic function 1 clkout clock output to supply an external device. an external pull-up resistor has to be added in accordance to the driving requirements of the external device. the clock frequency is 615.2 khz. 2 vs this pin is the positive supply of the transmitter electronics. an rf bypass capacitor should be connected directly to this pin and returned to gnd (pin 3) as short as possible. 3 gnd general ground connection. 4 fskout this pin is connected to a switch to gnd (pin 3). the switch is closed when the signal at fskdta (pin 7) is in a logic low state. the switch is open when the signal at fskdta (pin 7) is in a logic high state. fskout can switch an additional capacitor to the reference crystal network to pull the crystal frequency by an amount resulting in the desired fsk frequency shift of the transmitter output frequency. 1 300 ? v s v s 200 a 4 v s 120 k ? 200 k ?
data sheet 9 v 1.1, 2007-09-18 TDK5111F functional description 5 cosc this pin is connected to the reference oscillator circuit. the reference oscillator is working as a negative impedance converter. it presents a negative resistance in series to an inductance at the cosc pin. 6 askdta digital amplitude modulation can be imparted to the power amplifier through this pin. a logic high (askdta > 1.5 v or open) enables the power amplifier. a logic low (askdta < 0.5 v) disables the power amplifier. pin no. symbol interface schematic function 6 k ? 5 100 a v s v s +1.2 v 90 k ? 6 2.3 pf 30 a 60 k ? +1.1 v v s
TDK5111F functional description data sheet 10 v 1.1, 2007-09-18 7 fskdta digital frequency modulation can be imparted to the xtal oscillator by this pin. the vco-frequency varies in accordance to the frequency of the reference oscillator. a logic high (fskdta > 1.5v or open) sets the fsk switch to a high impedance state. a logic low (fskdta < 0.5 v) closes the fsk switch from fskout (pin 4) to gnd (pin 3). a capacitor can be switched to the reference crystal network this way. the xtal oscillator frequency will be shifted giving the designed fsk frequency deviation. pin no. symbol interface schematic function +1.2 v 90 k ? 7 30 a 60 k ? +1.1 v v s
data sheet 11 v 1.1, 2007-09-18 TDK5111F functional description 1) indicated voltages and currents apply for pll enable mode and transmit mode. in power down mode, the values are zero or high-ohmic. 8 pagnd ground connection of the power amplifier. the rf ground return path of the power amplifier output paout (pin 9) has to be concentrated to this pin. 9 paout rf output pin of the transmitter. a dc path to the positive supply vs has to be supplied by the antenna matching network. 10 pdwn disable pin for the complete transmitter circuit. a logic low (pdwn < 0.7 v) turns off all transmitter functions. a logic high (pdwn > 1.5 v) gives access to all transmitter functions. pdwn input will be pulled up by 40 a internally by either setting fskdta or askdta to a logic high-state. pin no. symbol interface schematic function 9 8 10 v s 150 k ? 5 k ? 250 k ? "on" 40 a ? (askdta+fskdta)
TDK5111F functional description data sheet 12 v 1.1, 2007-09-18 2.3 functional block diagram figure 2 functional block diagram crystal 9.84 mhz xtal osc :16 pfd :64 vco :2 power amp lf power supply 7 10 2 9 8 1 5 4 fsk data input power down control power supply vs power amplifier output power amplifier ground on clock output or 6 ask data input 3 ground fsk switch
data sheet 13 v 1.1, 2007-09-18 TDK5111F functional description 2.4 functional block description 2.4.1 pll synthesizer the phase locked loop synthesizer consists of a voltage controlled oscillator (vco), an asynchronous divider chain, a phase detector, a charge pump and a loop filter. it is fully implemented on chip. the tuning circuit of the vco consisting of spiral inductors and varactor diodes is on chip, too. therefore no additional external components are necessary. the nominal center frequency of the vco is 630mhz. the oscillator signal is fed both, to the synthesizer divider chain and (via a 1:2 divider) to the power amplifier. the overall division ratio of the asynchronous synthesizer divider chain is 64. the phase detector is a type iv pd with charge pump. the passive loop filter is realized on chip. 2.4.2 crystal oscillator the crystal oscillator operates at 9.84 mhz. the crystal frequency is divided by 16. the resulting 615.2 khz are available at the clock output clkout (pin1) to drive the clock input of a micro controller. to achieve fsk transmission, the oscillator frequency can be detuned by a fixed amount by switching an external capacitor via fskout (pin 4). the condition of the switch is controlled by the signal at fskdta (pin 7). table 4 fskdta - fsk switch 1) low: voltage at pin < 0.5v 2) open: pin open 3) high: voltage at pin > 1.5v 2.4.3 power amplifier the vco frequency is divided by 2 and fed to the power amplifier. the power amplifier can be switched on and off by the signal at askdta (pin 6). fskdta (pin7) fsk switch low 1) closed open 2) , high 3) open
TDK5111F functional description data sheet 14 v 1.1, 2007-09-18 table 5 askdta - power amplifier 1) low: voltage at pin < 0.5v 2) open: pin open 3) high: voltage at pin > 1.5v the power amplifier has an open collector output at paout (pin 9) and requires an external pull-up coil to provide bias. the coil is part of the tuning and matching lc circuitry to get best performance with the external loop antenna. to achieve the best power amplifier efficiency, the high frequency voltage swing at paout (pin 9) should be twice the supply voltage. the power amplifier has its own ground pin pagnd (pin 8) in order to reduce the amount of coupling to the other circuits. 2.4.4 power modes the ic provides three power modes, the power down mode, the pll enable mode and the transmit mode. 2.4.4.1 power down mode in the power down mode the complete chip is switched off. the current consumption is typically 0.3 na at 3 v 25c. this current doubles every 8c. the values for higher temperatures are typically 14 na at 85c and typically 600 na at 125c. 2.4.4.2 pll enable mode in the pll enable mode the pll is switched on but the power amplifier is turned off to avoid undesired power radiation during the time the pll needs to settle. the settling time of the pll is determined mainly by the turn on time of the crystal oscillator and is in the range of 1 msec depending on the used crystal. the current consumption is typically 4ma. askdta (pin6) power amplifier low 1) off open 2) , high 3) on
data sheet 15 v 1.1, 2007-09-18 TDK5111F functional description or bias source fskdta askdta pdwn fskout paout ic on bias voltage pa on 120 k ? pll fsk 120 k ? 315 mhz 2.4.4.3 transmit mode in the transmit mode the pll is switched on and the power amplifier is turned on too. the current consumption of the ic is typically 14 ma when using a proper transforming network at paout, see figure 8. 2.4.4.4 power mode control the bias circuitry is powered up via a voltage v > 1.5 v at the pin pdwn (pin10). when the bias circuitry is powered up, the pins askdta and fskdta are pulled up internally. forcing the voltage at the pins low overrides the internally set state. alternatively, if the voltage at askdta or fskdta is forced high externally, the pdwn pin is pulled up internally via a current source. in this case, it is not necessary to connect the pdwn pin, it is recommended to leave it open. the principle schematic of the power mode control circuitry is shown in figure 3 figure 3 power mode control circuitry
TDK5111F functional description data sheet 16 v 1.1, 2007-09-18 table 6 provides a listing of how to get into the different power modes table 6 power modes 1) low: voltage at pin < 0.7v (pdwn) voltage at pin < 0.5v (fskdta, askdta) 2) open: pin open 3) high: voltage at pin > 1.5v other combinations of the control pi ns pdwn, fskdta and askdta are not recommended. pdwn fskdta askdta mode low 1) low, open low, open power down open 2) low low high 3) low, open, high low pll enable open high low high low, open, high open, high transmit open high open, high open low, open, high high
data sheet 17 v 1.1, 2007-09-18 TDK5111F functional description fskdta high low to askdta to min. 1 msec. t t data open, high low modes: transmit pll enable power down fskdta high low to askdta to min. 1 msec. t t data high low modes: transmit pll enable power down 2.4.5 recommended timing diagrams for ask- and fsk-modulation ask modulation using fskdta and askdta, pdwn not connected figure 4 ask modulation fsk modulation using fskdta and askdta, pdwn not connected. figure 5 fsk modulation in case of fsk modulation without using pdwn it should be considered, that a too small value of c 2 (referring to figure 8 and the bom) could possibly enlarge the start-up time of the oscillator significantly.
TDK5111F functional description data sheet 18 v 1.1, 2007-09-18 pdwn high low to askdta to min. 1 msec. t t data open, high low modes: transmit pll enable power down fskdta to min. 1 msec. t data open, high low modes: transmit pll enable power down pdwn high low to t askdta open, high low to t alternative ask modulation, fskdta not connected. figure 6 alternative ask modulation alternative fsk modulation figure 7 alternative fsk modulation
data sheet 19 v 1.1, 2007-09-18 TDK5111F applications 3 applications 3.1 50 ohm-output testboard schematic figure 8 50 ohm-output testboard schematic
TDK5111F applications data sheet 20 v 1.1, 2007-09-18 3.2 50 ohm-output testboard layout figure 9 top side of tdk5111 f-testboard with 50 ohm-output figure 10 bottom side of tdk5111 f-testboard with 50 ohm-output
data sheet 21 v 1.1, 2007-09-18 TDK5111F applications 3.3 bill of material (50 ohm-output evalboard) refe rence value specification r1 open r2 open r3 4k7 0603, +/-5% r4 12k 0603, +/-5% r5 open r6 15k 0603, +/-5% r7 open c1 15p 0603, c0g, +/-0,1p c2 6p8 0603, c0g, +/-1% c3 open c4 open c5 100p 0603, x7r, +/-10% c6 12p 0603, c0g, +/-1% c7 100p 0603, c0g, +/-1% c8 1n 0603, c0g, +/-5% c9 6p8 0603, c0g, +/-0,1p c10 47n 0603, x7r, +/-10% l1 56n epcos simid 0603-c, +/-2% l2 100n epcos simid 0603-c, +/-2% x1 n.e. x2 n.e. x3 pin single-pole connector, 2,54mm x4 pin single-pole connector, 2,54mm x5 sma-connector x6 sma-connector x7 n.e. jp1 solder bridge in position "xtal" jp2 solder bridge in position "fsk" q1 9843.75 khz, cl=12pf tokyo denpa tss-3b 9843.75 khz spec.no. 1053-921 ic1 TDK5111F
TDK5111F applications data sheet 22 v 1.1, 2007-09-18 3.4 application hints on the crystal oscillator application hints on the crystal oscillator the crystal oscillator achieves a turn on time in the range of 1 msec depending on the used crystal. to achieve this, a nic oscillator type is implemented in the tdk 5111 f. the input impedance of this oscillator is a negative resistance in series to an inductance. therefore the load capacitance of the crystal cl (specified by the crystal supplier) is transformed to the capacitance cv. figure 11 application hints formula 1: cl: crystal load capacitance for nominal frequency : angular frequency l: inductance of the crystal oscillator example for the ask-mode: referring to the application circuit, in ask-mode the capacitance c2 is replaced by a short to ground. assume a crystal frequency of 9.84 mhz and a crystal load capacitance of cl = 12 pf. the inductance l at 9.84 mhz is about 4.6 h. therefore c1 is calculated to 10 pf. ic -r l f, cl cv l cl cv 2 1 1 + = 1 1 1 2 c l cl cv = + =
data sheet 23 v 1.1, 2007-09-18 TDK5111F applications example for the fsk-mode: fsk modulation is achieved by switching the load capacitance of the crystal as shown below. figure 12 fsk mode the frequency deviation of the crystal oscillator is multiplied with the divider factor n of the phase locked loop to the output of the power amplifier. in case of small frequency deviations (up to +/- 400 ppm), the two desired load capacitances can be calculated with the formula below. c l : crystal load capacitance for nominal frequency c 0 : shunt capacitance of the crystal f: frequency : = 2 f: angular frequency n: division ratio of the pll df: peak frequency deviation because of the inductive part of the tdk 5111 f, these values must be corrected by formula 1 on the preceding page. the value of cv can be calculated. ic -r l f, cl cv1 cv2 cosc fskout fskdta csw ) 1 ) 0 ( 2 1 ( 1 * 1 ) 1 ) 0 ( 2 1 ( 1 * 0 c cl c f n f c cl c f n f c cl cl + + ? + + ? = m
TDK5111F applications data sheet 24 v 1.1, 2007-09-18 if the fsk switch is closed, cv is equal to cv1 (c1 in the application diagram). if the fsk switch is open, cv2 (c2 in the application diagram) can be calculated. csw: parallel capacitance of the fsk switch (3 pf incl. layout parasitics) remark: these calculations are only approximations. the necessary values depend on the layout also and must be adapted for the specific application board. 3.5 design hints on the clock output (clkout) the clkout pin is an open collector output. an external pull up resistor (rl) should be connected between this pin and the positive supply voltage. the value of rl is depending on the clock frequency and the load capacitance cld (pcb board plus input capacitance of the microcontroller). rl can be calculated to: table 7 clock output remark: to achieve a low current consumption and a low spurious radiation, the largest possible rl should be chosen. fclkout=615.2 khz cl [ pf ] rl [ kohm ] 539 10 18 20 10 l cl cv 2 1 1 + = 1 ) ( ) 1 ( ) ( 1 2 2 cv cv csw cv cv cv csw c cv ? + + ? + ? ? = = cld fclkout rl * 8 * 1 =
data sheet 25 v 1.1, 2007-09-18 TDK5111F applications even harmonics of the signal at clkout can interact with the crystal oscillator input cosc preventing the start-up of oscillation. care must be taken in layout by sufficient separation of the signal lines to ensure sufficiently small coupling. 3.6 application hints on the power-amplifier the power amplifier operates in a high efficient class c mode. this mode is characterized by a pulsed operation of the power amplifier transistor at a current flow angle of << . a frequency selective network at the amplifier output passes the fundamental frequency component of the pulse spectrum of the collector current to the load. the load and its resonance transformation to the collector of the power amplifier can be generalized by the equivalent circuit of figure 13. the tank circuit l//c//rl in parallel to the output impedance of the transistor should be in resonance at the operating frequency of the transmitter. figure 13 equivalent power amplifier tank circuit the optimum load at the collector of the power amplifier for ?critical? operation under idealized conditions at resonance is: the theoretical value of r lc for an rf output power of p o = 10dbm (10mw) is: ?critical? operation is characterized by the rf peak voltage swing at the collector of the pa transistor to just reach the supply voltage v s . the high degree of efficiency under ?critical? operating conditions can be explained by the low power losses at the transistor. during the conducting phase of the transistor, its collector voltage is very small. this way the power loss of the transistor, equal to i c *u ce is minimized. this is particularly true for small current flow angles of << . v s r l c l o s lc p v r * 2 2 = ? = = 450 01 . 0 * 2 3 2 lc r
TDK5111F applications data sheet 26 v 1.1, 2007-09-18 in practice the rf-saturation voltage of the pa transistor and other parasitics reduce the ?critical? r lc . the output power p o is reduced by operating in an ?overcritical? mode characterised by r l > r lc . the power efficiency (and the bandwidth) increase when operating at a slightly higher r l , as shown in figure 14. the collector efficiency e is defined as the diagram of figure 14 was measured directly at the pa-output at v s = 3 v. losses in the matching circuitry decrease the output power by about 1.5 db. as can be seen from the diagram, 250 ? is the optimum impedance for operation at 3 v. for an approximation of r opt and p out at other supply voltages those two formulas can be used: and figure 14 output power p o (mw) and collector efficiency e vs. load resistor r l . the dc collector current i c of the power amplifier and the rf output power p o vary with the load resistor r l . this is typical for overcritical operation of class c amplifiers. the collector current will show a characteristic dip at the resonance frequency for this type of ?overcritical? operation. the depth of this dip will increase with higher values of r l . c s o i v p e = s opt v r ~ opt out r p ~ 0 2 4 6 8 10 12 14 16 18 0 100 200 300 400 500 rl [ohm] pout [mw] 10*ec
data sheet 27 v 1.1, 2007-09-18 TDK5111F reference 4 reference 4.1 electrical data 4.1.1 absolute maximum ratings attention: the maximum ratings must not be exceeded under any circumstances, not even momentarily and individually, as permanent damage to the ic will result. table 8 absolute maximum ratings, t amb = -40 c ? +125 c ambient temperature under bias: t a = ? 40c to +125 c note: all voltages referred to ground (pins) unless stated otherwise. pins 3 and 8 are grounded. parameter symbol limit values unit remarks min. max. junction temperature t j ? 40 +150 c storage temperature t s ? 40 +125 c thermal resistance r thja 220 k/w supply voltage v s ? 0.3 +4.0 v voltage at any pin excluding pin 9 v pins -0.3 v s + 0.3 v voltage at pin 9 v pin9 -0.3 2 * v s v no esd-diode to v s esd integrity, all pins v esd -1 +1 kv jedec standard jesd22-a114-b esd integrity, all pins excluding pin 9 v esd -2.5 +2.5 kv jedec standard jesd22-a114-b
TDK5111F reference data sheet 28 v 1.1, 2007-09-18 4.2 operating ratings within the operational range the ic operates as described in the circuit description. table 9 operating ratings 4.3 ac/dc characteristics ac/dc characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature. typical charcateristics are the median of the production. 4.3.1 ac/dc characteristic at 3v, 25c parameter symbol limit values unit test conditions min. max. supply voltage v s 2.1 4.0 v ambient temperature t a -40 125 c table 10 supply voltage v s =3v, ambient temperature t amb =25c parameter symbol limit values unit test conditions min. typ. max. current consumption power down mode i s pdwn 0.3 100 na v (pins 10, 6 and 7) < 0.2 v pll enable mode i s pll_en 45.5ma transmit mode 315 mhz i s transm 14 17.5 ma output frequency output frequency f out 305 315 325 mhz f out = 32 * f cosc clock driver output (pin 1) output current (high) i clkout 5av clkout = v s saturation voltage (low) 1) v satl 0.56 v i clkout = 1 ma
data sheet 29 v 1.1, 2007-09-18 TDK5111F reference fsk switch output (pin 4) on resistance r fskout 250 ? v fskdta = 0 v on capacitance c fskout 6pfv fskdta = 0 v off resistance r fskout 10 k ? v fskdta = v s off capacitance c fskout 1.5 pf v fskdta = v s crystal oscillator input (pin 5) capacitive load c coscmax 5pf serial resistance of the crystal 100 ? f = 9.84 mhz input inductance of the cosc pin 4.6 h f = 9.84 mhz ask modulation data input (pin 6) ask transmit disabled v askdta 00.5v ask transmit enabled v askdta 1.5 v s v input bias current askdta i askdta 30 a v askdta = v s input bias current askdta i askdta -20 a v askdta = 0 v ask data rate f askdta 20 khz fsk modulation data input (pin 7) fsk switch on v fskdta 00.5v fsk switch off v fskdta 1.5 v s v input bias current fskdta i fskdta 30 a v fskdta = v s input bias current fskdta i fskdta -20 a v fskdta = 0 v fsk data rate f fskdta 20 khz power amplifier output (pin 9) output power 2) at 315 mhz transformed to 50 ohm p out315 7.2 10.2 13.2 dbm table 10 supply voltage v s =3v, ambient temperature t amb =25c (cont?d) parameter symbol limit values unit test conditions min. typ. max.
TDK5111F reference data sheet 30 v 1.1, 2007-09-18 4.3.2 ac/dc characteristic at 2.1v ...4.0 v, -40c ...+125c power down mode control (pin 10) power down mode v pdwn 00.7vv askdta < 0.2 v v fskdta < 0.2 v pll enable mode v pdwn 1.5 v s vv askdta < 0.5 v transmit mode v pdwn 1.5 v s vv askdta > 1.5 v input bias current pdwn i pdwn 30 a v pdwn = v s 1) derating linearly to a saturation voltage of max. 140 mv at i clkout = 0 ma 2) power amplifier in overcritical c-operation matching circuitry as used in the 50 ohm-output testboard at the specified frequency. tolerances of the passive elements not taken into account. table 11 supply voltage v s =2.1v ... 4.0v, t amb =-40c ... +125c parameter symbol limit values unit test conditions min. typ. max. current consumption power down mode i s pdwn 4 a v (pins 10, 6 and 7) < 0.2 v pll enable mode i s pll_en 46ma transmit mode i s transm 10.6 15.5 ma @ 2.1 v 14 18 ma @ 3 v 16.2 21 ma @ 4 v output frequency output frequency 1) f out 311 315 317 mhz f out = 32 * f cosc clock driver output (pin 1) output current (high) i clkout 5av clkout = v s saturation voltage (low) 2) v satl 0.5 v i clkout = 0.6 ma table 10 supply voltage v s =3v, ambient temperature t amb =25c (cont?d) parameter symbol limit values unit test conditions min. typ. max.
data sheet 31 v 1.1, 2007-09-18 TDK5111F reference fsk switch output (pin 4) on resistance r fskout 280 ? v fskdta = 0 v on capacitance c fskout 6pfv fskdta = 0 v off resistance r fskout 10 k ? v fskdta = v s off capacitance c fskout 1.5 pf v fskdta = v s crystal oscillator input (pin 5) capacitive load c coscmax 5pf serial resistance of the crystal 100 ? f = 9.84 mhz input inductance of the cosc pin 4.6 h f = 9.84 mhz ask modulation data input (pin 6) ask transmit disabled v askdta 00.5v ask transmit enabled v askdta 1.5 v s v input bias current askdta i askdta 33 a v askdta = v s input bias current askdta i askdta -20 a v askdta = 0 v ask data rate f askdta 20 khz fsk modulation data input (pin 7) fsk switch on v fskdta 00.5v fsk switch off v fskdta 1.5 v s v input bias current fskdta i fskdta 33 a v fskdta = v s input bias current fskdta i fskdta -20 a v fskdta = 0 v fsk data rate f fskdta 20 khz table 11 supply voltage v s =2.1v ... 4.0v, t amb =-40c ... +125c (cont?d) parameter symbol limit values unit test conditions min. typ. max.
TDK5111F reference data sheet 32 v 1.1, 2007-09-18 power amplifier output (pin 9) output power 3) at 315 mhz transformed to 50 ohm. p out, 315 4.5 7 10 dbm v s = 2.1 v p out, 315 6.5 10.2 13.5 dbm v s = 3.0 v p out, 315 7.5 12.5 17 dbm v s = 4.0 v power down mode control (pin 10) power down mode v pdwn 00.5vv askdta < 0.2 v v fskdta < 0.2 v pll enable mode v pdwn 1.5 v s vv askdta < 0.5 v transmit mode v pdwn 1.5 v s vv askdta > 1.5 v input bias current pdwn i pdwn 38 a v pdwn = v s 1) a) when the minimum t a is increased by 10c, the minimum f out decreases by 1 mhz. b) when the maximum t a is decreased by 10c, the maximum f out increases by 1 mhz. c) when the minimum v s is increased by 60 mv, the maximum f out increases by 1 mhz. restriction of c): the maximum f out must not be increased by more than 19 mhz by increasing v s . all three measures can be taken independently and additive. 2) derating linearly to a saturation voltage of max. 140 mv at i clkout = 0 ma 3) matching circuitry as used in the 50 ohm-output testboard. tolerances of the passive elements not taken into account. range @ 2.1 v, +25c: 7 dbm +/- 2 dbm typ. temperature dependency at 2.1 v: +0.05 dbm@-40c and -0.3 dbm@+125c, reference +25c range @ 3.0 v, +25c: 10.2 dbm +/- 3 dbm typ. temperature dependency at 3.0 v: +0.1 dbm@-40c and -0.5 dbm@+125c, reference +25c range @ 4.0 v, +25c: 12.5 dbm +/- 4.5 dbm typ. temperature dependency at 4.0 v: + 0 dbm@-40c and -0.5 dbm@+125c, reference +25c table 11 supply voltage v s =2.1v ... 4.0v, t amb =-40c ... +125c (cont?d) parameter symbol limit values unit test conditions min. typ. max.
data sheet 33 v 1.1, 2007-09-18 TDK5111F package outlines 5 package outlines figure 15 pg-tssop-10 0.09 0.1 3 0.42 -0.1 +0.15 +0.08 -0.05 0.125 6 max. h a 0.1 4.9 m 0.25 a b c 3 0.1 c b a 0.08 m 0.22 0.05 0.15 max. 0.1 0.85 1.1 max. a c b 0.5 index marking you can find all of our packages, sorts of packing and others in our infineon internet page ?products?: http://www.infineon.com/products . dimensions in mm smd = surface mounted device
TDK5111F list of tables page data sheet 34 v 1.1, 2007-09-18 table 1 order information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 table 2 pin definition and functions - overview . . . . . . . . . . . . . . . . . . . . . . . . 7 table 3 pin definition and function 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 table 4 fskdta - fsk switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 table 5 askdta - power amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 table 6 power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 table 7 clock output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 table 8 absolute maximum ratings, t amb = -40 c ? +125 c . . . . . . . . . . . . 27 table 9 operating ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 table 10 supply voltage v s =3v, ambient temperature t amb =25c . . . . . . . . . . 28 table 11 supply voltage v s =2.1v ... 4.0v, t amb =-40c ... +125c. . . . . . . . . . . 30
TDK5111F list of figures page data sheet 35 v 1.1, 2007-09-18 figure 1 ic pin configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 figure 2 functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 figure 3 power mode control circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 4 ask modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 5 fsk modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 6 alternative ask modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 7 alternative fsk modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 8 50 ohm-output testboard schematic . . . . . . . . . . . . . . . . . . . . . . . . . . 19 figure 9 top side of tdk5111 f-testboard with 50 ohm-output. . . . . . . . . . . 20 figure 10 bottom side of tdk5111 f-testboard with 50 ohm-output . . . . . . . . 20 figure 11 application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 12 fsk mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 figure 13 equivalent power amplifier tank circuit. . . . . . . . . . . . . . . . . . . . . . . . . 25 figure 14 output power po (mw) and collector efficiency e vs. load resistor rl. 26 figure 15 pg-tssop-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
www.infineon.com published by infineon technologies ag


▲Up To Search▲   

 
Price & Availability of TDK5111F

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X